百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Linux内核对设备树的处理(下)

ahcoder 2025-03-10 11:57 11 浏览



第04节_dtb转换为device_node(unflatten)

在讲解之前,我们先想一个问题,我们的uboot把设备树DTB文件随便放到内存的某一个地方就可以使用,为什么内核运行中,他不会去覆盖DTB所占用的那块内存呢?

在前面我们讲解设备树格式时,我们知道,在设备树文件中,可以使用/memreserve/指定一块内存,这块内存就是保留的内存,内核不会占用它。即使你没有指定这块内存,当我们内核启动时,他也会把设备树所占用的区域保留下来。

如下就是函数调用过程:

start_kernel // init/main.c
    setup_arch(&command_line);  // arch/arm/kernel/setup.c
        arm_memblock_init(mdesc);   // arch/arm/kernel/setup.c
            early_init_fdt_reserve_self();
                    /* Reserve the dtb region */
                    // 把DTB所占区域保留下来, 即调用: memblock_reserve
                    early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
                                      fdt_totalsize(initial_boot_params),
                                      0);           
            early_init_fdt_scan_reserved_mem();  // 根据dtb中的memreserve信息, 调用memblock_reserve
            
        unflatten_device_tree();    // arch/arm/kernel/setup.c
            __unflatten_device_tree(initial_boot_params, NULL, &of_root,
                        early_init_dt_alloc_memory_arch, false);            // drivers/of/fdt.c
                
                /* First pass, scan for size */
                size = unflatten_dt_nodes(blob, NULL, dad, NULL);
                
                /* Allocate memory for the expanded device tree */
                mem = dt_alloc(size + 4, __alignof__(struct device_node));
                
                /* Second pass, do actual unflattening */
                unflatten_dt_nodes(blob, mem, dad, mynodes);
                    populate_node
                        np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
                                    __alignof__(struct device_node));
                        
                        np->full_name = fn = ((char *)np) + sizeof(*np);
                        
                        populate_properties
                                pp = unflatten_dt_alloc(mem, sizeof(struct property),
                                            __alignof__(struct property));
                            
                                pp->name   = (char *)pname;
                                pp->length = sz;
                                pp->value  = (__be32 *)val;

可以看到,先把dtb中的memreserve信息告诉内核,把这块内存区域保留下来,不占用它。

然后将扁平结构的设备树提取出来,构造成一个树,这里涉及两个结构体:device_node结构体和property结构体。弄清楚这两个结构体就大概明白这节视频的主要内容了。

在dts文件里,每个大括号{ }代表一个节点,比如根节点里有个大括号,对应一个device_node结构体;memory也有一个大括号,也对应一个device_node结构体。

节点里面有各种属性,也可能里面还有子节点,所以它们还有一些父子关系。

根节点下的memory、chosen、led等节点是并列关系,兄弟关系。

对于父子关系、兄弟关系,在device_node结构体里面肯定有成员来描述这些关系。

打开include/linux/Of.h可以看到device_node结构体的定义如下:

struct device_node {

const char *name; // 来自节点中的name属性, 如果没有该属性, 则设为"NULL"

const char *type; // 来自节点中的device_type属性, 如果没有该属性, 则设为"NULL"

phandle phandle;

const char *full_name; // 节点的名字, node-name[@unit-address]

struct fwnode_handle fwnode;

        struct  property *properties;  // 节点的属性
        struct  property *deadprops;    /* removed properties */
        struct  device_node *parent;   // 节点的父亲
        struct  device_node *child;    // 节点的孩子(子节点)
        struct  device_node *sibling;  // 节点的兄弟(同级节点)
    #if defined(CONFIG_OF_KOBJ)
        struct  kobject kobj;
    #endif
        unsigned long _flags;
        void    *data;
    #if defined(CONFIG_SPARC)
        const char *path_component_name;
        unsigned int unique_id;
        struct of_irq_controller *irq_trans;
    #endif
    };
device_node结构体表示一个节点,property结构体表示节点的具体属性。


properties结构体的定义如下:
```c
        struct property {
            char    *name;    // 属性名字, 指向dtb文件中的字符串
            int length;       // 属性值的长度
            void    *value;   // 属性值, 指向dtb文件中value所在位置, 数据仍以big endian存储
            struct property *next;
        #if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
            unsigned long _flags;
        #endif
        #if defined(CONFIG_OF_PROMTREE)
            unsigned int unique_id;
        #endif
        #if defined(CONFIG_OF_KOBJ)
            struct bin_attribute attr;
        #endif
        };

两个结构体与dts内容的对于关系如下:

具体的代码分析,参考视频内容。



第05节_device_node转换为platform_device

内核如何把device_node转换成platfrom_device

两个问题

a.那些device_node可以转换为platform_device

/ {
	model = "SMDK24440";
	compatible = "samsung,smdk2440";

	#address-cells = <1>;
	#size-cells = <1>;
	//内存设备不会	
	memory@30000000 {
		device_type = "memory";
		reg =  <0x30000000 0x4000000>;
	};
/*
	cpus {
		cpu {
			compatible = "arm,arm926ej-s";
		};
	};
*/	//只是设置一些启动信息
	chosen {
		bootargs = "noinitrd root=/dev/mtdblock4 rw init=/linuxrc console=ttySAC0,115200";
	};

/*只有这个led设备才对转换成platfrom_device */	
	led {
		compatible = "jz2440_led";
		reg = ;
	};
/************************************/
};

a. 内核函数
of_platform_default_populate_init, 遍历device_node树, 生成platform_device

b. 并非所有的device_node都会转换为platform_device只有以下的device_node会转换:

b.1 该节点必须含有compatible属性

b.2 根节点的子节点(节点必须含有compatible属性)

b.3 含有特殊compatible属性的节点的子节点(子节点必须含有compatible属性):

这些特殊的compatilbe属性为: “simple-bus”,“simple-mfd”,“isa”,"arm,amba-bus "

根节点是例外的,生成platfrom_device时,即使有compatible属性也不会处理

举例

cpu可以访问很多外设,spi控制器 I2c控制器,led

如何在设备树中描述这些硬件?

b.4 示例: 比如以下的节点,

/mytest会被转换为platform_device,

因为它兼容"simple-bus", 它的子节点/mytest/mytest@0 也会被转换为platform_device

/i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;

/i2c/at24c02节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个i2c_client。

类似的也有/spi节点, 它一般也是用来表示SPI控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;

/spi/flash@0节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个spi_device。

   / {
         mytest {
             compatile = "mytest", "simple-bus";
             mytest@0 {
                   compatile = "mytest_0";
             };
         };
         
         i2c {
             compatile = "samsung,i2c";
             at24c02 {
                   compatile = "at24c02";                      
             };
         };

         spi {
             compatile = "samsung,spi";              
             flash@0 {
                   compatible = "winbond,w25q32dw";
                   spi-max-frequency = <25000000>;
                   reg = <0>;
                 };
         };
     };

b.怎么转换
函数调用过程:
a. 入口函数
of_platform_default_populate_init (drivers/of/platform.c) 被调用到过程:

里面有段属性,编译内核段属性的变量会被集中放在一起
vim
arch/arm/kernel/vmlinux.lds

start_kernel     // init/main.c
    rest_init();
        pid = kernel_thread(kernel_init, NULL, CLONE_FS);
                    kernel_init
                        kernel_init_freeable();
                            do_basic_setup();
                                do_initcalls();
                                    for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
                                        do_initcall_level(level);  // 比如 do_initcall_level(3)
                                                                               for (fn = initcall_levels[3]; fn < initcall_levels[3+1]; fn++)
                                                                                    do_one_initcall(initcall_from_entry(fn));  // 就是调用"arch_initcall_sync(fn)"中定义的fn函数

b.
of_platform_default_populate_init (drivers/of/platform.c) 生成platform_device的过程:

遍历device树

of_platform_default_populate_init
    of_platform_default_populate(NULL, NULL, NULL);
        of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)
            for_each_child_of_node(root, child) {
                rc = of_platform_bus_create(child, matches, lookup, parent, true);  // 调用过程看下面
                            dev = of_device_alloc(np, bus_id, parent);   // 根据device_node节点的属性设置platform_device的resource
                if (rc) {
                    of_node_put(child);
                    break;
                }
            }
 

c. of_platform_bus_create(bus, matches, …)的调用过程(处理bus节点生成platform_devie, 并决定是否处理它的子节点):

        dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);  // 生成bus节点的platform_device结构体
        if (!dev || !of_match_node(matches, bus))  // 如果bus节点的compatile属性不吻合matches成表, 就不处理它的子节点
            return 0;

        for_each_child_of_node(bus, child) {    // 取出每一个子节点
            pr_debug("   create child: %pOF\n", child);
            rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);   // 处理它的子节点, of_platform_bus_create是一个递归调用
            if (rc) {
                of_node_put(child);
                break;
            }
        }

d. I2C总线节点的处理过程:

/i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
platform_driver的probe函数中会调用i2c_add_numbered_adapter:

  i2c_add_numbered_adapter   // drivers/i2c/i2c-core-base.c
       __i2c_add_numbered_adapter
           i2c_register_adapter
               of_i2c_register_devices(adap);   // drivers/i2c/i2c-core-of.c
                   for_each_available_child_of_node(bus, node) {
                       client = of_i2c_register_device(adap, node);
                                       client = i2c_new_device(adap, &info);   // 设备树中的i2c子节点被转换为i2c_clien



第06节_platform_device跟platform_driver的匹配

drivers/base/platform.c
a. 注册 platform_driver 的过程:

platform_driver_register
    __platform_driver_register
        drv->driver.probe = platform_drv_probe;
        driver_register
            bus_add_driver
                klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);    // 把 platform_driver 放入 platform_bus_type 的driver链表中
                driver_attach
                    bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);  // 对于plarform_bus_type下的每一个设备, 调用__driver_attach
                        __driver_attach
                            ret = driver_match_device(drv, dev);  // 判断dev和drv是否匹配成功
                                        return drv->bus->match ? drv->bus->match(dev, drv) : 1;  // 调用 platform_bus_type.match
                            driver_probe_device(drv, dev);
                                        really_probe
                                            drv->probe  // platform_drv_probe
                                                platform_drv_probe
                                                    struct platform_driver *drv = to_platform_driver(_dev->driver);
                                                    drv->probe

b. 注册 platform_device 的过程:

platform_device_register
    platform_device_add
        device_add
            bus_add_device
                klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices); // 把 platform_device 放入 platform_bus_type的device链表中
            bus_probe_device(dev);
                device_initial_probe
                    __device_attach
                        ret = bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); // // 对于plarform_bus_type下的每一个driver, 调用 __device_attach_driver
                                    __device_attach_driver
                                        ret = driver_match_device(drv, dev);
                                                    return drv->bus->match ? drv->bus->match(dev, drv) : 1;  // 调用platform_bus_type.match
                                        driver_probe_device

匹配函数是platform_bus_type.match, 即platform_match,

匹配过程按优先顺序罗列如下:

比较
platform_dev.driver_override 和 platform_driver.drv->name

比较 platform_dev.dev.of_node的compatible属性 和 platform_driver.drv->of_match_table

比较 platform_dev.name 和 platform_driver.id_table

比较 platform_dev.name 和 platform_driver.drv->name

有一个成功, 即匹配成功


第07节_内核中设备树的操作函数

include/linux/目录下有很多of开头的头文件:

dtb -> device_node -> platform_device

a. 处理DTB

of_fdt.h // dtb文件的相关操作函数, 我们一般用不到, 因为dtb文件在内核中已经被转换为device_node树(它更易于使用)

b. 处理device_node

 of.h               // 提供设备树的一般处理函数, 比如 of_property_read_u32(读取某个属性的u32值), *of_get_child_count(获取某个device_node的子节点数)
 of_address.h       // 地址相关的函数, 比如 of_get_address(获得reg属性中的addr, size值)
 of_match_device(从matches数组中取出与当前设备最匹配的一项)
 of_dma.h           // 设备树中DMA相关属性的函数
 of_gpio.h          // GPIO相关的函数
 of_graph.h         // GPU相关驱动中用到的函数, 从设备树中获得GPU信息
 of_iommu.h         // 很少用到
 of_irq.h           // 中断相关的函数
 of_mdio.h          // MDIO (Ethernet PHY) API
 of_net.h           // OF helpers for network devices. 
 of_pci.h           // PCI相关函数
 of_pdt.h           // 很少用到
 of_reserved_mem.h  // reserved_mem的相关函数

以中断相关的作为例子一个设备可以发出中断,必须包含中断号和中断触发方式

官方设备树规格书里面的设备示例

soc {
#address-cells = <1>;
#size-cells = <1>;
serial {
compatible = "ns16550";
reg = <0x4600 0x100>;
clock-frequency = <0>;
interrupts = <0xa 0x8>;
interrupt-parent = <&ipic>;
};
};

里面的属性里面有中断值

通过

int of_irq_parse_one(struct device_node *device, int index,
			  struct of_phandle_args *out_irq);

解析某一对值,或者我们可以解析原始数据

int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq);

addr就指向了某一对值,把里面的中断号中断触发方式解析出来,保存在of_phandle_args结构体中

c. 处理 platform_device

of_platform.h // 把device_node转换为platform_device时用到的函数,

/* Platform drivers register/unregister */
extern struct platform_device *of_device_alloc(struct device_node *np,
					 const char *bus_id,
					 struct device *parent);

文件涉及的函数在 device_node -> platform_device 中大量使用

 // 比如of_device_alloc(根据device_node分配设置platform_device), 
 //     of_find_device_by_node (根据device_node查找到platform_device),
 //     of_platform_bus_probe (处理device_node及它的子节点)
 of_device.h        // 设备相关的函数, 比如 of_match_device
可以通过of_match_device找出哪一项最匹配,

of文件分为三类

  • 处理DTB
  • 处理device_node
  • 处理 platform_device 设备相关信息




第08节_在根文件系统中查看设备树(有助于调试)

a. /sys/firmware/fdt // 查看原始dtb文件

hexdump -C /sys/firmware/fdt

b. /sys/firmware/devicetree // 以目录结构程现的dtb文件, 根节点对应base目录, 每一个节点对应一个目录, 每一个属性对应一个文件

比如查看 #address-cells 的16进制

hexdump -C “#address-cells”

查看compatible

cat compatible

如果你在设备树设备节点中设置一个错误的中断属性,那么就导致led对应的平台设备节点没办法创建

c. /sys/devices/platform // 系统中所有的platform_device, 有来自设备树的, 也有来有.c文件中注册的

对于来自设备树的platform_device, 可以进入 /sys/devices/platform/<设备名>/of_node 查看它的设备树属性

d. /proc/device-tree 是链接文件, 指向
/sys/firmware/devicetree/base

上一节:了解更多观看linux内核对设备树的处理(上)

预热 | 万众期待的单片机,Linux二合一的STM32MP157开发板亮相

相关推荐

ARM64内核内存布局图(ARM64内核内存布局图解)

ARM64架构处理器采用48位物理寻址机制,最大可以寻找到256TB的物理地址空间。对于目前的应用来说已经足够了,不需要扩展到64位的物理地址寻址。虚拟地址也同样最大支持48位支持,所以在处理器的架构...

ARM64 linux 调试串口通信(ARM64 linux 调试串口通信实验报告)

ARM64linux调试串口通信随着国产机普及很多工作也转移到了新平台上,以前调试设备用的笔记本电脑也换成新国产ARM64架构的了。本文以绿联CM204USB-A转RJ45Console调试线...

Gentoo Linux 终止对 Itanium IA-64 体系的支持

GentooLinux是最后几个继续维护Itanium(IA-64)架构构建的Linux发行版之一,但现在这些已停产的英特尔处理器正在逐步淘汰。由于Linux6.7内核放弃了对Itan...

如何检查 Linux 系统是 32 位还是 64 位?这9个命令查的又快又准!

在Linux系统中,位数(bit)通常指的是CPU架构的位宽,即CPU一次能够处理的数据量。32位系统和64位系统在内存寻址能力、计算性能和软件支持上存在显著差异:「32位系统」:...

调出好画面!带你玩转飞凌嵌入式AM62x开发板的显示接口

来源:飞凌嵌入式官网“显示”是嵌入式开发板最为重要的功能之一,能够支持更多种类、更高规格的显示接口,意味着它能够应对的使用场景也更加广泛。每一款嵌入式开发板在出厂前都会做屏幕调试,但在客户的实际项目开...

带你玩转AM62x开发板的显示接口——LVDS的显示和修改方式

此前小编已为大家介绍过OK6254-C开发板的RGB显示和修改方式,今天将继续为大家介绍OK6254-C开发板的LVDS显示和修改方式。话不多说,我们进入正题。1、LVDS接口规格飞凌嵌入式OK62...

AM335x继任者?AM6254性能解析(am2361p)

飞凌嵌入式FET6254-C核心板基于TISitaraTMAM62x系列工业级处理器设计开发,采用ARMCortex-A53架构,主频最高可达1.4GHz;并集成了丰富的接口,可广泛应用于的工...

如何在 Linux 发行版中安装微信和 QQ?

很多人因为工作沟通的原因需要用到微信和QQ,那么如何在Linux发行版中安装微信和QQ呢?以下是一些尝试的解决方法。QQ上一个版本的QQLinux版还是在2009年,而在现在,基于N...

MySQL:物理备份工具XBK(mysql 备份方案)

XBK的优缺点:XBK(PerconaXtraBackup)优点:1.免费2.热备:备份期间不阻塞innodb和XtraDB表,但会阻塞Myisam表3.物理备份:备份恢复快XBK缺点:1.不支持远...

AMD锐龙9 9950X CPU AIDA64跑分曝光:比7950X最高快45%

IT之家6月26日消息,Anandtech论坛网友igor_kavinski本周一发布帖子,分享了AMD旗舰锐龙99950X处理器的AIDA64基准测试跑分,与当前基于Z...

qemu linux内核(5.10.209)开发环境搭建

版本信息宿主机:ubuntu20.04.6LTS(FocalFossa)虚拟机:ubuntu20.04.6LTS(FocalFossa)安装宿主机的步骤省略,和一般的在vmware中安...

iPhone 7成刷机神器,成功运行乌班图、Linux、安卓

在智能机刚开始流行的时候,很多手机发烧友都喜欢刷机,当时民间大神们制作了特别多优化的ROM。后来随着手机硬件的逐步提升,以及厂商们对系统的大力优化,让大家对于刷机的兴趣也越来越少。不知道大家还记得这部...

12 款最佳免费开源 Linux 渲染器 | 火狐浏览器 130.0 版本更新

12款最佳免费开源Linux渲染器Linux的一大优势在于其拥有丰富的开源软件,可以满足艺术家、摄影师、动画师和设计师的需求。凭借价格低廉的硬件、免费的软件以及少量的才能和灵感,任何人都可以创...

Linux中xargs 命令详解与实用场景

xargs是Linux系统中常用的命令行工具之一,它能够从标准输入构造参数列表并传递给其他命令使用,是处理批量数据操作时的重要利器。一、xargs的基本语法xargs[OPTION]...[C...

Linux 磁盘扩容(非LVM)方式(linux扩容lvm磁盘容量)

今天接到一个客户的需求,CentOS的/分区容量太小了,OA系统所有的数据都在这下面,由于当时前同事给客户安装系统时采用了标准分区,而不是LVM逻辑卷,所以不支持在线扩容。df-hT查看磁盘使...