详解RTP协议之H264封包和解包实战
ahcoder 2025-01-26 20:55 8 浏览
0.引言
为了更好理解本篇文章,可以先阅读前面几篇文章,文章列表如下:
建议:阅读本文前,一定要阅读前面的文章,只有理解了原理,才能够正真读懂代码。
1.RTP实战源码框架
在win上主要是支持qt,使用2015编译器。linux上支持cmake编译。主要是支持跨平台支持。
使用函数int get_annexb_nalu (nalu_t *nalu, FILE *bits),一开始是读取本地h264文件,解析出不带startcode的nalu,接着是函数static void rtp_h264_pack_get_info(void* pack, uint16_t* seq, uint32_t* timestamp),经过函数就会得到RTP包,处理RTP包就有2个流程,第一个是通过网络发送出去,然后播放。另外一个流程是通过RTP_unpack去解码,生成nalu,再加上h264的start code,就可以存储在本地文件,然后再播放。框架如下图所示:
main.c是用户自定义发送和写文件,测试函数。
rtp-packet.c是RTP Packet序列化和反序列化功能。
rtp-payload.c主要是RTP封包和拆包的接口层。
rtp-h264-packet.c主要是H264封包RTP的实现层。
rtp-h264-unpacket.c主要是H264拆包RTP的实现层。
这里以视频数据为例子,整个源码的数据对象的关系是,在封包流程中,nalu指向rtp结构,再指向rtp序列化,最终才是sendto的数据。在解封装的流程中,recv的数据指向rtp反序列化,再到rtp结构,最终解析出nalu,加上startcode,存在本地文件,保存为h264,可以播放。
2.RTP实战测试效果
(1)播放命令
ffplay h264.sdp -protocol_whitelist "file,http,https,rtp,udp,tcp,tls"
界面如下:
(2)注意,需要在如下的目录下,准备好输入h264文件,即把h264文件放到这个debug目录,因为代码中需要打开输入的h264文件。
(3)h264.sdp是代码生成,整个日志打印过程,其界面如下:
3.源码详解
3.1 初始化参数和回调函数注册
(1)rtp header头部定义。按照前面文章描述的头部结构来定义。封包流程中,注册函数,源码如下:
/**
* @brief rtp_payload_encode_input 这里是通用的接口
* @param encoder
* @param data data具体是什么媒体类型的数据,接口不关注,具体由ctx->encoder->input去处理
* @param bytes
* @param timestamp
* @return
*/
int rtp_payload_encode_input(void* encoder, const void* data, int bytes, uint32_t timestamp)
{
struct rtp_payload_delegate_t* ctx;
ctx = (struct rtp_payload_delegate_t*)encoder;
return ctx->encoder->input(ctx->packer, data, bytes, timestamp);
}
RTP Header固定长度为12个字节。rtp packet(包括header+payload)的数据结构定义如下:
void* rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam)
{
struct rtp_payload_delegate_t* ctx;
ctx = calloc(1, sizeof(*ctx));
if (ctx)
{
if (rtp_payload_find(payload, name, ctx) < 0
|| NULL == (ctx->packer = ctx->decoder->create(handler, cbparam)))
{
free(ctx);
return NULL;
}
}
return ctx;
}
(2)网络发送到本地,这里使用的UDP发送。
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
3.2 详解 封装RTP包流程源码
(1)函数rtp_payload_encode_create(int payload, const char* name, uint16_t seq, uint32_t ssrc, struct rtp_payload_t *handler, void* cbparam)接收用户参数,并设置回调函数。源码如下:
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(2)通过如下代码可以看出,ctx->encoder->create指向的函数是 rtp_h264_pack_create,也就是正真的实现体。源码如下:
struct rtp_payload_encode_t *rtp_h264_encode()
{
static struct rtp_payload_encode_t packer = {
rtp_h264_pack_create,
rtp_h264_pack_destroy,
rtp_h264_pack_get_info,
rtp_h264_pack_input,
};
return &packer;
}
(3)函数rtp_h264_pack_create,用来存储外部设置的参数。源码如下:
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(4)封包流程中,也是使用相同的回调函数,源码如下:
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(5)通过网络发送到本地。源码如下:
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(6)获取nalu的sps、pps,并封装成RTP包。源码如下:
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(7)rtp-payload.c的函数都是接口层,正真实现体都在rtp-h264-pack.c和rtp-h264-unpack.c里。
int rtp_packet_serialize(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
hdrlen = rtp_packet_serialize_header(pkt, data, bytes);
if (hdrlen < RTP_FIXED_HEADER || hdrlen + pkt->payloadlen > bytes)
return -1;
memcpy(((uint8_t*)data) + hdrlen, pkt->payload, pkt->payloadlen);
return hdrlen + pkt->payloadlen;
}
(8)接口ctx->encoder->input(ctx->packer, data, bytes, timestamp)执行的实现体rtp_h264_pack_input(void* pack, const void* h264, int bytes, uint32_t timestamp),通过如下源码,可以看出。
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(9)从这里就可以实现打包,源码如下:
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(10)函数rtp_h264_pack_nalu(packer, p1, (int)nalu_size)意思是,正如前面文章所讲,是直接打包,就是没有切片,一个nalu打包为一个RTP包。源码如下:
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(11)函数调用rtp_packet_serialize(&packer->pkt, rtp, n),就是一个打包的过程,就是严格按照RTP的SPEC来实现。源码如下:
// 拿到一帧RTP序列化后的数据
static int rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags)
{
struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;//拿到用户传递进来的参数
int ret = 0;
ret = sendto(
ctx->fd,
(void*)packet,
bytes,
0,
(struct sockaddr*)&ctx->addr,
ctx->addr_size);
uint8_t *nalu = (uint8_t *)packet;
printf("rtp send packet -> nalu_type:%d,0x%02x,0x%02x, bytes:%d, timestamp:%u\n",
nalu[12]&0x1f, nalu[12], nalu[13], bytes, timestamp);
ret = rtp_payload_decode_input(ctx->decoder_h264, packet, bytes); // 重新又
解封装
return 0;
}
// 把可读RTP packet封装成要发送出去的数据 序列化
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(12)把可读RTP packet封装成要发送出去的数据,与上面的函数是反向关系。这里把头部和数据分开处理。从packet读取一个个字节,然后封包去处理。
int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes)
{
int hdrlen;
uint32_t i;
uint8_t* ptr;
if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))
{
assert(0); // RTP version field must equal 2 (p66)
return -1;
}
// RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);
if (bytes < hdrlen + pkt->extlen)
return -1;
ptr = (uint8_t *)data;
nbo_write_rtp_header(ptr, &pkt->rtp);
ptr += RTP_FIXED_HEADER;
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)
{
nbo_w32(ptr, pkt->csrc[i]); // csrc列表封装到头部
}
// pkt header extension
if (1 == pkt->rtp.x)
{
// 5.3.1 RTP Header Extension
assert(0 == (pkt->extlen % 4));
nbo_w16(ptr, pkt->reserved);
nbo_w16(ptr + 2, pkt->extlen / 4);
memcpy(ptr + 4, pkt->extension, pkt->extlen); // extension封装到头部
ptr += pkt->extlen + 4;
}
return hdrlen + pkt->extlen;
}
(13)RTP打包H264函数,把带startcode的nalu也传递进来。如果nalu_size + RTP_FIXED_HEADER <= (size_t)packer->size,这就是前面所说的打包的一种方式,正好吻合起来,如下:
static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes)
{
int r, n;
unsigned char *rtp;
// RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)
// RFC6184 5.8. Fragmentation Units (FUs) (p29)
uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑
uint8_t fu_header = *nalu & 0x1F; // 设置为s置位1
r = 0;
nalu += 1; // skip NAL Unit Type byte
bytes -= 1;
assert(bytes > 0);
// FU-A start
for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)
{
if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)
{
assert(0 == (fu_header & FU_START));
fu_header = FU_END | (fu_header & 0x1F); // FU-A end 整个nalu结束了
packer->pkt.payloadlen = bytes;
}
else
{
packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;
}
packer->pkt.payload = nalu;
n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;
rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);
if (!rtp) return -ENOMEM;
packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag
n = rtp_packet_serialize_header(&packer->pkt, rtp, n);
if (n != RTP_FIXED_HEADER)
{
assert(0);
return -1;
}
/*fu_indicator + fu_header*/
rtp[n + 0] = fu_indicator;
rtp[n + 1] = fu_header;
memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);
// packer->cbparam用户的参数
r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);
packer->handler.free(packer->cbparam, rtp);
bytes -= packer->pkt.payloadlen;
nalu += packer->pkt.payloadlen;
fu_header &= 0x1F; // clear flags
}
return r;
}
(14)把一个比较大的nalu,分多次进行打包,使用FU的方式。代码的思想,如同前面的文章所描述。代码如下:
static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes)
{
int r, n;
unsigned char *rtp;
// RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)
// RFC6184 5.8. Fragmentation Units (FUs) (p29)
uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑
uint8_t fu_header = *nalu & 0x1F; // 设置为s置位1
r = 0;
nalu += 1; // skip NAL Unit Type byte
bytes -= 1;
assert(bytes > 0);
// FU-A start
for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)
{
if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)
{
assert(0 == (fu_header & FU_START));
fu_header = FU_END | (fu_header & 0x1F); // FU-A end 整个nalu结束了
packer->pkt.payloadlen = bytes;
}
else
{
packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;
}
packer->pkt.payload = nalu;
n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;
rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);
if (!rtp) return -ENOMEM;
packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag
n = rtp_packet_serialize_header(&packer->pkt, rtp, n);
if (n != RTP_FIXED_HEADER)
{
assert(0);
return -1;
}
/*fu_indicator + fu_header*/
rtp[n + 0] = fu_indicator;
rtp[n + 1] = fu_header;
memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);
// packer->cbparam用户的参数
r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);
packer->handler.free(packer->cbparam, rtp);
bytes -= packer->pkt.payloadlen;
nalu += packer->pkt.payloadlen;
fu_header &= 0x1F; // clear flags
}
return r;
}
(15)函数rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes)表示一个大的nalu分多次打包的过程,这个原理前面的文章,已经讲过了。源码如下:
static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes)
{
int r, n;
unsigned char *rtp;
// RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)
// RFC6184 5.8. Fragmentation Units (FUs) (p29)
uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑
uint8_t fu_header = *nalu & 0x1F; // 设置为s置位1
r = 0;
nalu += 1; // skip NAL Unit Type byte
bytes -= 1;
assert(bytes > 0);
// FU-A start
for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)
{
if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)
{
assert(0 == (fu_header & FU_START));
fu_header = FU_END | (fu_header & 0x1F); // FU-A end 整个nalu结束了
packer->pkt.payloadlen = bytes;
}
else
{
packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;
}
packer->pkt.payload = nalu;
n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;
rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);
if (!rtp) return -ENOMEM;
//视频拆包时,nalu的结束标志
packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag
n = rtp_packet_serialize_header(&packer->pkt, rtp, n);
if (n != RTP_FIXED_HEADER)
{
assert(0);
return -1;
}
/*fu_indicator + fu_header*/
rtp[n + 0] = fu_indicator;
rtp[n + 1] = fu_header;
memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);
// packer->cbparam用户的参数,回调用户定义的函数,前面已介绍过
r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);
packer->handler.free(packer->cbparam, rtp);
bytes -= packer->pkt.payloadlen;
nalu += packer->pkt.payloadlen;
fu_header &= 0x1F; // clear flags
}
return r;
}
(16)前面的源码已经分析过,函数rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags)是用户定义的函数,主要是用作发送数据和自定义封装函数(把这个两个函数写在一起不是很合适)。函数packer->handler.packet(packer->cbparam, rtp, n, packer->pkt.rtp.timestamp, 0),这里会回调用户定义的rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags),就通过网络去发送数据到指定的IP上,我这里就是到本机。用户的参数和定义的函数就是通过 struct rtp_payload_t handler_rtp_decode_h264和struct rtp_h264_test_t ctx来完成。再回顾下这个源码,如下:
// 拿到一帧RTP序列化后的数据
static int rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags)
{
struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;//拿到用户传递进来的参数
int ret = 0;
ret = sendto(
ctx->fd,
(void*)packet,
bytes,
0,
(struct sockaddr*)&ctx->addr,
ctx->addr_size);
uint8_t *nalu = (uint8_t *)packet;
printf("rtp send packet -> nalu_type:%d,0x%02x,0x%02x, bytes:%d, timestamp:%u\n",
nalu[12]&0x1f, nalu[12], nalu[13], bytes, timestamp);
ret = rtp_payload_decode_input(ctx->decoder_h264, packet, bytes); // 重新又解封装
return 0;
}
3.3 解封RTP包流程源码
(1)函数rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam)接收外部参数。源码如下:
void* rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam)
{
struct rtp_payload_delegate_t* ctx;
ctx = calloc(1, sizeof(*ctx));
if (ctx)
{
if (rtp_payload_find(payload, name, ctx) < 0
|| NULL == (ctx->packer = ctx->decoder->create(handler, cbparam)))
{
free(ctx);
return NULL;
}
}
return ctx;
}
(2)通过如下代码可以看出,ctx->decoder->create指向的函数是rtp_h264_unpack_create(struct rtp_payload_t *handler, void* param),也就是正真的实现体。源码如下:
struct rtp_payload_decode_t *rtp_h264_decode()
{
static struct rtp_payload_decode_t unpacker = {
rtp_h264_unpack_create,
rtp_h264_unpack_destroy,
rtp_h264_unpack_input,
};
return &unpacker;
}
static void* rtp_h264_unpack_create(struct rtp_payload_t *handler, void* param)
{
struct rtp_decode_h264_t *unpacker;
unpacker = (struct rtp_decode_h264_t *)calloc(1, sizeof(*unpacker));
if(!unpacker)
return NULL;
memcpy(&unpacker->handler, handler, sizeof(unpacker->handler));
unpacker->cbparam = param;
unpacker->flags = -1;
return unpacker;
}
(3)函数rtp_payload_decode_input(ctx->decoder_h264, packet, bytes)就是处在接口层,正真的实现是由ctx->decoder->input指向的函数rtp_h264_unpack_input(void* p, const void* packet, int bytes)(该函数才是正真的实现体),根据packer不同的类型去实现解封装,源码如下:
//解封装
static int rtp_h264_unpack_input(void* p, const void* packet, int bytes)
{
int r;
uint8_t nalt;
struct rtp_packet_t pkt;
struct rtp_decode_h264_t *unpacker;
unpacker = (struct rtp_decode_h264_t *)p;
// 反序列化
if(!unpacker || 0 != rtp_packet_deserialize(&pkt, packet, bytes) || pkt.payloadlen < 1)
return -EINVAL;
if (-1 == unpacker->flags)
{
unpacker->flags = 0;
unpacker->seq = (uint16_t)(pkt.rtp.seq - 1); // disable packet lost
}
if ((uint16_t)pkt.rtp.seq != (uint16_t)(unpacker->seq + 1))
{
unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;
unpacker->size = 0; // discard previous packets
}
unpacker->seq = (uint16_t)pkt.rtp.seq;
//就是payload的第一个字节
nalt = ((unsigned char *)pkt.payload)[0];
switch(nalt & 0x1F)
{
case 0: // reserved
case 31: // reserved
// 这里最好是报错 然后返回错误值
assert(0);
return 0; // packet discard
//对应不同的类型,就做不同的解释
case 24: // STAP-A
return rtp_h264_unpack_stap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 0);
case 25: // STAP-B
return rtp_h264_unpack_stap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 1);
case 26: // MTAP16
return rtp_h264_unpack_mtap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 2);
case 27: // MTAP24
return rtp_h264_unpack_mtap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 3);
case 28: // FU-A
return rtp_h264_unpack_fu(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 0);
case 29: // FU-B
return rtp_h264_unpack_fu(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 1);
default: // 1-23 NAL unit
r = unpacker->handler.packet(unpacker->cbparam, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, unpacker->flags);
unpacker->flags = 0;
unpacker->size = 0;
return 0 == r ? 1 : r; // packet handled
}
}
(4)如果是1对1的RTP包,直接就反序列化即可。如收到一个UDP包,有1000字节,就可以解析出这个udp包的rtp信息。通过收到的数据,解析出来可读的RTP Packet。
// RFC3550 RTP: A Transport Protocol for Real-Time Applications
// 5.1 RTP Fixed Header Fields (p12)
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| synchronization source (SSRC) identifier |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
| contributing source (CSRC) identifiers |
| .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
// 通过收到的数据,解析出来可读的RTP packet 反序列化
int rtp_packet_deserialize(struct rtp_packet_t *pkt, const void* data, int bytes)
{
uint32_t i, v;
int hdrlen;
const uint8_t *ptr;
if (bytes < RTP_FIXED_HEADER) // RFC3550 5.1 RTP Fixed Header Fields(p12)
return -1;
ptr = (const unsigned char *)data;
memset(pkt, 0, sizeof(struct rtp_packet_t));
// pkt header
v = nbo_r32(ptr);
pkt->rtp.v = RTP_V(v);
pkt->rtp.p = RTP_P(v);
pkt->rtp.x = RTP_X(v);
pkt->rtp.cc = RTP_CC(v);
pkt->rtp.m = RTP_M(v);
pkt->rtp.pt = RTP_PT(v);
pkt->rtp.seq = RTP_SEQ(v);
pkt->rtp.timestamp = nbo_r32(ptr + 4);
pkt->rtp.ssrc = nbo_r32(ptr + 8);
assert(RTP_VERSION == pkt->rtp.v); // 调试的时候用
hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4; // 解析带csrc时的总长度
if (RTP_VERSION != pkt->rtp.v || bytes < hdrlen + (pkt->rtp.x ? 4 : 0) + (pkt->rtp.p ? 1 : 0))
return -1; // 报错
// pkt contributing source
for (i = 0; i < pkt->rtp.cc; i++)
{
pkt->csrc[i] = nbo_r32(ptr + 12 + i * 4);
}
assert(bytes >= hdrlen);
pkt->payload = (uint8_t*)ptr + hdrlen; // 跳过头部 拿到payload
pkt->payloadlen = bytes - hdrlen; // payload长度
// pkt header extension
if (1 == pkt->rtp.x)
{
const uint8_t *rtpext = ptr + hdrlen;
assert(pkt->payloadlen >= 4);
pkt->extension = rtpext + 4;
pkt->reserved = nbo_r16(rtpext);
pkt->extlen = nbo_r16(rtpext + 2) * 4;
if (pkt->extlen + 4 > pkt->payloadlen)
{
assert(0);
return -1;
}
else
{
//有扩展
pkt->payload = rtpext + pkt->extlen + 4;
pkt->payloadlen -= pkt->extlen + 4;
}
}
// padding
if (1 == pkt->rtp.p)
{
uint8_t padding = ptr[bytes - 1];
if (pkt->payloadlen < padding)
{
assert(0);
return -1;
}
else
{
pkt->payloadlen -= padding;
}
}
return 0;
}
(5)将视频RTP包解封装为nalu,其原理就是封包的逆向过程,通过不同类型的数据包采用不同的打拆包方式,1对多的RTP拆包,源码如下:
// 5.8. Fragmentation Units (FUs) (p29)
/*
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FU indicator | FU header | DON |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
| |
| FU payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : ...OPTIONAL RTP padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
static int rtp_h264_unpack_fu(struct rtp_decode_h264_t *unpacker, const uint8_t* ptr, int bytes, uint32_t timestamp, int fu_b)
{
int r, n;
uint8_t fuheader;
//uint16_t don;
r = 0;
n = fu_b ? 4 : 2; // payload前面有几个字节是供fu_a或fu_b使用, fu_a只有2个字节; fu_b是4个字节
if (bytes < n || unpacker->size + bytes - n > RTP_PAYLOAD_MAX_SIZE)
{
assert(0);
return -EINVAL; // error
}
if (unpacker->size + bytes - n + 1 /*NALU*/ > unpacker->capacity)
{
void* p = NULL;
int size = unpacker->size + bytes + 1;
size += size / 4 > 128000 ? size / 4 : 128000;
p = realloc(unpacker->ptr, size);
if (!p)
{
// set packet lost flag
unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;
unpacker->size = 0;
return -ENOMEM; // error
}
unpacker->ptr = (uint8_t*)p;
unpacker->capacity = size;
}
fuheader = ptr[1];
//don = nbo_r16(ptr + 2);
if (FU_START(fuheader))//头
{
#if 0
if (unpacker->size > 0)
{
unpacker->flags |= RTP_PAYLOAD_FLAG_PACKET_CORRUPT;
unpacker->handler.packet(unpacker->cbparam, unpacker->ptr, unpacker->size, unpacker->timestamp, unpacker->flags);
unpacker->flags = 0;
unpacker->size = 0; // reset
}
#endif
unpacker->size = 1; // NAL unit type byte
unpacker->ptr[0] = (ptr[0]/*indicator*/ & 0xE0) | (fuheader & 0x1F);
assert(H264_NAL(unpacker->ptr[0]) > 0 && H264_NAL(unpacker->ptr[0]) < 24);
}
else
{
if (0 == unpacker->size)//中间包
{
unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;
return 0; // packet discard
}
assert(unpacker->size > 0);
}
unpacker->timestamp = timestamp;
if (bytes > n)
{
assert(unpacker->capacity >= unpacker->size + bytes - n);
memmove(unpacker->ptr + unpacker->size, ptr + n, bytes - n);
unpacker->size += bytes - n;
}
if(FU_END(fuheader))//中间过程
{
if(unpacker->size > 0) // 多次传入数据后等到FU_END的时候难道一个完整的nalu
r = unpacker->handler.packet(unpacker->cbparam, unpacker->ptr, unpacker->size, timestamp, unpacker->flags);
unpacker->flags = 0;
unpacker->size = 0; // reset
}
return 0 == r ? 1 : r; // packet handled
}
(6)函数unpacker->handler.packet(unpacker->cbparam, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, unpacker->flags),也会回调用户自定义的函数去写入文件,注意:写文件前,需要加上startcode。源码如下:
static int rtp_decode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags)
{
static const uint8_t start_code[4] = { 0, 0, 0, 1 };
struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;
static uint8_t buffer[2 * 1024 * 1024];
assert(bytes + 4 < sizeof(buffer));
assert(0 == flags);
size_t size = 0;
if (0 == strcmp("H264", ctx->encoding) || 0 == strcmp("H265", ctx->encoding))
{
memcpy(buffer, start_code, sizeof(start_code));//添加startcode
size += sizeof(start_code);
}
else if (0 == strcasecmp("mpeg4-generic", ctx->encoding))
{
int len = bytes + 7;
uint8_t profile = 2;
uint8_t sampling_frequency_index = 4;
uint8_t channel_configuration = 2;
buffer[0] = 0xFF; /* 12-syncword */
buffer[1] = 0xF0 /* 12-syncword */ | (0 << 3)/*1-ID*/ | (0x00 << 2) /*2-layer*/ | 0x01 /*1-protection_absent*/;
buffer[2] = ((profile - 1) << 6) | ((sampling_frequency_index & 0x0F) << 2) | ((channel_configuration >> 2) & 0x01);
buffer[3] = ((channel_configuration & 0x03) << 6) | ((len >> 11) & 0x03); /*0-original_copy*/ /*0-home*/ /*0-copyright_identification_bit*/ /*0-copyright_identification_start*/
buffer[4] = (uint8_t)(len >> 3);
buffer[5] = ((len & 0x07) << 5) | 0x1F;
buffer[6] = 0xFC | ((len / 1024) & 0x03);
size = 7;
}
memcpy(buffer + size, packet, bytes);
size += bytes;
printf("nalu get -> bytes:%d, timestamp:%u\n", size, timestamp);
// TODO:
// check media file
fwrite(buffer, 1, size, ctx->out_file);
}
4.总结
本篇文章主要通过实战过程中源码的方式,对RTP打包和拆包进行了详细分析,并用代码实现了前面文章讲的原理。结合前面的文章,能够更好的理解整个过程,希望能够帮助到大家。欢迎关注,收藏,转发,分享。
后期关于项目知识,也会更新在微信公众号“记录世界 from antonio”,欢迎关注
相关推荐
- 真快,iOS 16.4 验证已关闭,但仍然可升级
-
在4月15日早上时段,苹果正式关闭iOS16.4系统验证,意味着你不能通过电脑端进行降级,意思是,你当前系统大于iOS16.4系统版本,你就不能降级了,已经没办法了。亲自测试,使用iPh...
- 更新后的Linux内核XZ补丁撤销"Jia Tan"作为维护者的身份
-
今年3月,Linux内核的XZ嵌入式压缩实现项目从公共领域转为BSD零条款许可,并更新了树内代码。此后,在上游XZ项目中又发现了臭名昭著的XZ后门。随着这些重大问题的解决,Las...
- CentOS Stream 10发布:Linux 6.12 LTS内核、GNOME 47登场
-
IT之家12月14日消息,代号为“Coughlan”的CentOSStream10于12月12日正式发布,生命周期大约为五年,将持续维护到2030年。IT之家援引新闻稿,C...
- ToDesk Linux更新发布:新增摄像头、网络诊断
-
ToDesk更新来了!最新版Liunx-4.3.0.0针对Linux用户上新了摄像头、网络诊断等多种实用功能,大幅提升了用户使用体验。并且ToDesk全面支持国产三大操作系统——麒麟、统信、方德,为L...
- 时隔两年再更新 Linux Skype Alpha发布
-
【中关村在线软件资讯】7月14日消息:微软在今天面向Linux用户发布了一个全新的Skype版本——LinuxSkypeAlpha,这也是Linux版Skype在2014年来的首次新版更新。这次更...
- Linux4.4 RC1释出 75%是驱动更新(linux rtc驱动)
-
2015-11-1905:35:00作者:鲁畅4.3稳定版发布已半月有余,本周一,Linux创始人LinuxTorvalds在内核邮件中表示,Linux4.4RC1正式释出。早就有Linux爱...
- 更新后的 DeviceTree 可让微软 Windows Dev Kit 2023 启动 Linux
-
微软的WindowsDevKit2023也被称为"ProjectVolterra",它是开发人员为改善ARM上的Windows支持而做出的早期努力,开发人员可以在小尺寸ARMP...
- 腾讯QQ更新Windows 9.9.16、macOS 6.9.58、Linux 3.2.13
-
IT之家10月20日消息,腾讯QQ于10月18日更新Windows9.9.16、macOS6.9.58、Linux3.2.13,新增支持在图片查看器中识别二维码等功能。新版...
- 树莓派OS更新:升级至Linux 6.6 LTS,改善对树莓派5支持
-
IT之家3月14日消息,树莓派基金会(RaspberryPiFoundation)近日更新了树莓派OS(RaspberryPiOS),虽然还是基于DebianGNU/Linu...
- 腾讯QQ更新Windows 9.9.15、macOS 6.9.55、Linux 3.2.12
-
IT之家9月29日消息,腾讯QQ更新Windows9.9.15、macOS6.9.55、Linux3.2.12版本,新增支持设置停靠在桌面边缘时不自动隐藏(Windows)等功能...
- Linux 5.17 将实现免重启更新主板 BIOS:利用英特尔 PFRUT 技术
-
IT之家12月30日消息,根据外媒Phoronix消息,英特尔开源项目的工程师已经准备为Linux5.17引入PFRUT技术,实现免重启更新主板BIOS。这项技术属于ACPI...
- Fwupd 2.0.9 引入 EFI 证书洞察:Linux 固件更新更安全、更智能
-
Firmware更新是保持系统安全和优化性能的重要环节。最近,开源工具Fwupd推出了2.0.9版本,为Linux用户带来了更强大的固件更新功能和改进的用户体验!新版本亮点:更清晰、更高...
- linux上将大文件切割成小文件之split命令
-
说明:很多场景需要拷贝或传输文件时,如果我们需要拷贝的文件太大的话,就需要想办法将其分成小个文件进行拷贝,然后载重新合并。今天介绍split命令格式:split[OPTION][INPUT[...
- Linux 入门系列——ACL(linux文件acl)
-
什么是ACLACL是accesscontrollist(访问控制列表)的缩写。主要的目的是提供在传统的owner,group,other的read,write,execute权限之外的更为细的权限...
- 基于 Linux 快速搭建企业级 Prometheus 监控系统(实战指南)
-
一、前言随着系统规模的扩大,运维人员需要及时掌握服务器、应用程序、网络等多方面的运行状态,传统监控工具已难以满足现代化需求。Prometheus作为云原生时代最流行的开源监控系统,具备强大的数据采集...
- 一周热门
- 最近发表
-
- 真快,iOS 16.4 验证已关闭,但仍然可升级
- 更新后的Linux内核XZ补丁撤销"Jia Tan"作为维护者的身份
- CentOS Stream 10发布:Linux 6.12 LTS内核、GNOME 47登场
- ToDesk Linux更新发布:新增摄像头、网络诊断
- 时隔两年再更新 Linux Skype Alpha发布
- Linux4.4 RC1释出 75%是驱动更新(linux rtc驱动)
- 更新后的 DeviceTree 可让微软 Windows Dev Kit 2023 启动 Linux
- 腾讯QQ更新Windows 9.9.16、macOS 6.9.58、Linux 3.2.13
- 树莓派OS更新:升级至Linux 6.6 LTS,改善对树莓派5支持
- 腾讯QQ更新Windows 9.9.15、macOS 6.9.55、Linux 3.2.12
- 标签列表
-
- linux 远程 (37)
- u盘 linux (32)
- linux 登录 (34)
- linux 路径 (33)
- linux 文件命令 (35)
- linux 是什么 (35)
- linux 界面 (34)
- 查看文件 linux (35)
- linux 语言 (33)
- linux代码 (32)
- linux 查看命令 (33)
- 关闭linux (34)
- root linux (33)
- 删除文件 linux (35)
- linux 主机 (34)
- linux与 (33)
- linux 函数 (35)
- linux .ssh (35)
- cpu linux (35)
- 查看linux 系统 (32)
- linux 防火墙 (33)
- linux 手机 (32)
- linux 镜像 (34)
- linux mac (32)
- linux ip地址 (34)